If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4a^2+14a-3=0
a = 4; b = 14; c = -3;
Δ = b2-4ac
Δ = 142-4·4·(-3)
Δ = 244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{244}=\sqrt{4*61}=\sqrt{4}*\sqrt{61}=2\sqrt{61}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{61}}{2*4}=\frac{-14-2\sqrt{61}}{8} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{61}}{2*4}=\frac{-14+2\sqrt{61}}{8} $
| -2(5x+1)=-22 | | 30=5+w/5 | | 45+2x=15+5x | | 4v+6=14 | | 10=6x-24 | | x^2-14x+28+9x+102=180 | | -3(3x+2)=3(-4x+5) | | 3x/2-x=x/6-5/4 | | y/−3=1/6 | | F(x)=380 | | –9p+9=–8p | | −48=−0.8k | | 3=-6-9x | | 7/9d-6=8/9d-10 | | 3x—13=2 | | 11+19=8x+96 | | 4(5x+1)=64 | | 10=23x | | 3x+10+5x-8+4x+1=90 | | 70+65+x+2=180 | | x/3-1/2=x/5+3/2 | | 20+30s=30 | | 7+1.25a=43.25 | | 29-3w=-8w-9 | | -15y+75=50 | | 150+20x=0+30x | | 56−5z=−9z−16 | | (1/5x+.05x)-x-(90)=0 | | x/3-1-2=x/5+3/2 | | 6y+61=-2y-3 | | 12x−4x=0 | | 21y-20y=8+1 |